数据分析书籍阅读推荐理由 数据分析的书籍推荐

数据分析书籍阅读推荐 ?

(1)《谁说菜鸟不会数据分析(入门篇)》

《谁说菜鸟不会数据分析(入门篇)》基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。全书共8章,依次讲解数据分析必知必会知识、确定数据分析的结构化思维、数据处理技巧、数据展现的技术。

我看了入门篇、工具篇、SPSS篇,觉得入门篇、工具篇收获挺大,SPSS在目前工作上用不上,没有实操,逐渐忘了。《谁说菜鸟不会数据分析》家族又壮大了,加入了Python、R语言、信息图表篇新成员。

(2)深入浅出数据分析

《深入浅出数据分析》以类似“章回小说”的形式,向读者展现数据分析人员应知应会的技术:数据分析基本步骤、实验方法、最优化方法、假设检验方法等数据分析方法论,让你对数据分析流程、作用有个全面的认识。

(3)深入浅出统计学

该书介绍了概率计算、几何分布、正态分布、等统计学知识。虽然在业务实践中,这些统计学知识不一定会用上,但是让你对有数据有更全面的认识。

(4)《统计数据会说谎》

尽信书,不如无书;尽信数,也不如无数。该书介绍了10种数据扭曲事实的方法,让你在解读数据报告的时候多个心眼,数据源头在哪里?图表是否合理?这本书读起来比较轻松,如果没时间看书的话,抽几分钟看下写的读书笔记。

数据之路:统计数据会说谎(一)数据之路:统计数据会说谎(二)

2、工具

工欲善其事必先利其器,有了数据,得采用分析工具来处理这些数据,得到想要的结果。数据分析工具很多, Excel、SPSS、SQL、Python、R、SASS等,但是使用频率最高的还是Excel、SQL,至于进一步是学Python、R还是SPSS,可以看所在团队用什么工具,再进一步学习,学习一本编程语言如Python,可以实现数据的自动化处理,极大的提升工作效率,有更多时间做更有价值的事情。

(5)Excel数据处理与分析实战技巧精粹

《EXCEL数据处理与分析实战技巧精粹》提炼了Excel技术论坛上百万个技术提问,通过270多个案例进行讲解。认真实操后,相信可以应对大部分Excel层级的数据处理与分析挑战。如果觉得看书太枯燥,网易云课堂上王佩丰老师的精品免费视频,播放量达到56.4万。

跟王佩丰学Excel视频教程:Excel实战1800分钟 – 网易云课堂

(6)《PPT,要你好看》

推荐数据分析的书,怎么推荐到PPT上面去了。此言差异,处理完数据、做好图表,你不能直接把Excel文件发给领导吧。更多的时候需要做PPT,向领导汇报。该书在豆瓣评分8.0分,作者是某高校博士,内容严谨、案例丰富。讲解PPT,却高于PPT,受到圈内一致好评。

(7)《MYSQL必知必会》

该书详细介绍了常用的SQL语法,全书才304页,做到了“麻雀虽小五脏俱全”,不讲一句废话。学习了常用的SQL语法,可以去牛客网上面做SQL题目,这样才能掌握的更牢固。

3、逻辑思维

(8)《金字塔原理》

金字塔原理:逻辑思维与表达呈现。金字塔原理是一种重点突出、逻辑清晰、主次分明的逻辑思路、表达方式。搭建金字塔的具体做法是:自上而下表达,自下而上思考,纵向疑问回答/总结概括,横向归类分组/演绎归纳,序言讲故事,标题提炼思想精华。

数据之路:《金字塔原理》带你训练逻辑思维

4、业务知识

(9)《数据化管理》–电商、零售

数据化管理:洞悉零售及电子X运营》以对话的叙述方式,讲解了两个年轻人在大公司X、商品、电商、数据等部门工作的故事,通过大量案例深入浅出地讲解了数据意识和零售思维。作者将各种数据分析方法融入到具体的业务场景中,最终形成数据化管理模型,从而帮助企业提高运营管理能力。

该书以商业实践、分析思路为主,较少讲解Excel操作,可见作者功力深厚。该书作者微博账号@数据化管理,经常分享数据分析知识,很喜欢的一位博主。

(10)《网站分析实战》

该书以讲解PC时代网站分析为主,可能与移动互联网时代有点脱节,但是书中流量分析、用户分析等思路还是挺值得借鉴的。该书引导你从数据中寻找有价值的结论,并且指导公司管理层的决策,最终创造更大的网占价值

延伸阅读

Power BI书籍有什么好的推荐吗?

深入浅出数据分析:这本书的话,个人感觉挺简单的,内容基本上都有涉及,讲得也比较清楚。最好还是去知数学院去学下会更好点。

谁有好的BI书籍推荐一下?

给题主推荐几本感觉还可以的书吧

1、深入浅出数据分析:这本书的话,个人感觉挺简单的,内容基本上都有涉及,讲得也比较清楚。

2、啤酒与尿布:这本书可能也听说,比较经典的案例,通过案例来说事情的。

3、数据之美:这本书每章都解决一个具体的问题,实践感比较强吧,还有代码,对于理解数据分析的应用领域和做法有很大的帮助。

这些数据都是入门级的,对于BI方面的理解还不错,还有一些国外的数据写得非常好,不过建议题主可以看原版,内容比较全面。