等比数列通项和前n项和 等比数列通项例题

等比数列通项?

等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均属于正整数。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。(1)等比数列的通项公式是:An=A1*q^(n-1)(2)求和公式:Sn=nA1(q=1)Sn=A1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=(a1-an*q)/(1-q)=a1/(1-q)-a1/(1-q)*q^n(即A-Aq^n)(前提:q≠1)

延伸阅读

等差数列和等比数列的通项公式?

1.等差数列:通项公式:an=a1+(n-1)d

。等比数列:通项公式:an=a1*q^(n-1)(得出结论)

2.文字公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;末项:最后一位数;首项:第一位数等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。(原因解释)

3.这个常数叫做等差数列的公差。前n项和公式为: Sn=a1*n+ [n* (n-1)*d]/2或Sn= [n* (al+an)]/2。(内容延伸)

等比数列通项公式?

等比数列,就是数列中从第二项起,每一项与其前一项的比都相等,即“公比”。

设,数列的第一项是a,公比为q

则,这个等比数列的通项公式为

第n项=a乘以q的(n-1)次幂(n为正整数)

求等比数列的通项公式?

等比数列通项公式an有:

1、等差数列:

an=a1+(n-1)d;an=Sn-S(n-1)。

Sn=a1n+((n*(n-1))/2)d。

2、等比数列:

an=a1*q^(n-1);an=Sn/S(n-1)。

Sn=(a1(1-q^n))/1-q。

当n>=2时,a(n)=S(n+1)-S(n)。

当n=1时,a(n)=S(n)。

注:最后需要将n=1代入n>=2时所求出的式子,如果满足,则结论为a(n)=S(n+1)-S(n)n属于N+如果不满足,则n>=2时与n=1时需分开写,用大括号连接。

一·数列的通项公式

  按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

  求数列通项公式的方法非常多,常见的有观察法,累加法,累乘法,待定系数法,倒数法,解方程法,阶差法,和与通项的关系法等。除此之外,我们还会遇到一些难度较大的方法,比如,对数法,特征根法,不动点法,奇偶分析法等等。

二·求通项公式的常见方法

1·观察法:

由数列的前几项求通项公式的常用方法为观察法,即观察第n项与项数的关系,在观察时,往往需要对各项进行变形,变成形式类似,关系统一的形式,之后利用归纳得出通项公式。注意有限项归纳出的通项公式往往不唯一,有些通项公式可以利用分段函数来表示。

2·累加法:

等比数列的通项公式是什么?

1.等比数列通项公式:an=a1*q^(n-1。(得出结论)

2.等比数列公式就是在数学上求一定数量的等比数列的和的公式。(原因解释)

3.另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。(内容延伸)

等比数列通项公式是?

等比数列

(1)等比数列:An+1/An=q,n为自然数.

(2)通项公式:An=A1*q^(n-1);

推广式:An=Am·q^(n-m);

(3)求和公式:Sn=nA1(q=1)

Sn=[A1(1-q)^n]/(1-q)

(4)性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.

(6)在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方.