等价无穷小是什么意思 等价无穷小替换公式

等价无穷小是什么?

等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:

被代换的量,在取极限的时候极限值为0;

被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

延伸阅读

等价无穷小公式是怎么算的?

等价无穷小的公式:

1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。

2、(a^x)-1~x*lna [a^x-1)/x~lna]。

3、(e^x)-1~x、ln(1+x)~x。

4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简。

求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

等价无穷小推导过程?

当x趋近于0时: e^x-1 ~ x;ln(x+1) ~ x;sinx ~ x;arcsinx ~ x;tanx ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx

利用泰勒公式,在x趋向0时,ln(1+x)、sinx、tanx、e∧x-1、(1+x)∧a等等,这些都可以等价无穷小于x。当然,这取决于具体式子里面其他x项的次数,例如还有其他的x三次方,泰勒公式可能就要多展开一项,例如sinx就等价无穷小于x加六分之x的三次方

等价无穷小什么意思?

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时使用等价无穷小的条件:一个是被代换的量,在取极限的时候极限值为0,另一个是被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

为啥不能分别替换等价无穷小?

代数和或差的各个部分无穷小不能分别做替换。

一.等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意单独代换或分别代换),变上限积分函数(积分变限函数)也可以用等价无穷小进行替换。

二.数学分析的基础概念指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。

三.用等价无穷小替换原则是:整个识式子中的乘除因子可用等价无穷小替换,而加减时一般不能用等价无穷小替换。这些等价无穷小的式子来源于泰勒公式展开式,一般取了前面的1到3项。如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数,构建一个多项式近似函数。用得较多的是泰勒公式在x=0处的展开式。

等价无穷小的使用原则?

条件:

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

事实上,等价无穷小是由泰勒公式推导而来,所以运用等价无穷小的结论就是,乘除可以整体换,而加减情况不能换,即使可以,那也是凑巧正确。下面给出什么情况下会“凑巧正确”。

使用等价无穷小有两大原则:

1、乘除极限直接用。

2、加减极限时看分子分母阶数。若使用等价无穷小后分子分母阶数相同,则可用;若阶数不同则不可用。

性质

1、无穷小量不是一个数,它是一个变量。

2、零可以作为无穷小量的唯一一个常量。

3、无穷小量与自变量的趋势相关。

4、有限个无穷小量之和仍是无穷小量。

5、有界函数与无穷小量之积为无穷小量。

常用等价无穷小有哪些?

常用的等价无穷小一般有:

1)x趋向于0时: sinx~x; tanx~x; 1-cosx~(1/2)x^2; arcsinx~x; arctanx~x; (e^x)-1~x; (a^x)-1~xIna (01); In(1+x)~x; (1+x)^a~ax+1; (x^m)+(x^n)~x^m (n>m>0); lim(1+x)^(1/x)=e;

2)n趋向于无穷大时: lim[n^(1/n)]=1; lim[a^(1/n)]=1 (a>0); lim[1+1/n]^n=e;

3)在必要情况下,采用泰勒展开的高阶等价无穷小: sinx=x-(1/6)x^3+o(x^3); cosx=1-(x^2)/2!+(x^4)/4!+o(x^4); tanx=x+(1/3)x^3+o(x^3); arcsinx=x+(1/6)x^3+o(x^3); arctanx=x-(1/3)x^3+o(x^3); In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3); e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3); (1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2);


您可能感兴趣