什么是容斥原理?
容斥原理
容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物
有a、b两类,那么,a类或b类元素个数= a类元素个数+
b类元素个数—既是a类又是b类的元素个数。
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“a类元素”,“语文得满分”称为“b类元素”,“语、数都是满分”称为“既是a类又是b类的元素”,“至少有一门得满分的同学”称为“a类或b类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。)
容斥原理(2)
如果被计数的事物有a、b、c三类,那么,a类或b类或c类元素个数= a类元素个数+
b类元素个数+c类元素个数—既是a类又是b类的元素个数—既是a类又是c类的元素个数—既是b类又是c类的元素个数+既是a类又是b类而且是c类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?
分析:仿照例1的分析,你能先说一说吗?
例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成a类元素和b类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是a类又是b类的元素”。求的是“a类或b类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。
例4 分母是1001的最简分数一共有多少个?
分析:这一题实际上就是找分子中不能整除1001的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:
短跑游泳投掷短跑、游泳短跑、投掷游泳、投掷短路、游泳、投掷
1718156652
求这个班的学生共有多少人?
分析:这个班的学生数,应包括达到优秀和没有达到优秀的。
试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。
若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?
延伸阅读
二集合容斥原理?
1,二集合容斥原理公式:W=FV。先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
2,集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
小学容斥原理的三大公式?
容斥原理的三大公式:①A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C
②I=A∪B∪C+D=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+D
③I=A∪B∪C+D=A+B+C-含有两种元素-2*含有三种元素+D
容斥原理公式?
容斥原理三个公式:A∪B=A+B-A∩B,A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C,
S=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。
容斥原理的本质和二集合容斥原理是一样的,只不过由于又多了一个集合,公式和图形描述都变得更加复杂。其中A和B是两个集合,A表示集合A中的元素个数。在理解容斥原理时,完全可以把元素的个数类比做图形的面积。
小学奥数容斥原理的类型及解法?
容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
即:集合A加集合B组成一个新的集合C,再计算C的元素时为:C=A+B-AB
三集合容斥非标准公式原理?
三集合容斥非标准型公式是A+B+C-(AB+BC+AC)+ABC=总数-都不。三集合标准型是指把一个整体分成三部分,且告知两两相交的地方,并有三者都满足的,这样的题就是三集合标准型。
因为A、B、C与A交B两两的交集它们中都含A交B交C,然而ABC两两交集中应减两次,然而却将ABC两两交集中的A交B交C减了三次,所以应该加上多减的一次ABC的交集。
容斥原理指把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
生活中常见的容斥原理?
容斥原理是在计数时,必须注意没有重复,没有遗漏。本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人。
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。为15+12-4=23。