什么叫共轭复数?
共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。复数z的共轭复数记作z(上加一横),有时也可表示为Z*。
同时, 复数z(上加一横)称为复数z的复共轭(complex conjugate)。
加法法则:
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i
减法法则:
两个复数的差为实数之差加上虚数之差(乘以i)
即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
共轭复数怎么求例子?
共轭复数可以根据共轭复数的定义来求,一般地,a十bi的共轭复数为a一bi。例如3十4i的共轭复数为3一4i;又如3的共轭复数为3,4i的共轭复数为一4讠,实际上,求共轭复数就是将复数的实部保持不变,虚部变成它的相反数,在复数的除法中,通常将分子与分母同乘以分母的共轭复数来化简
求共轭复数基本公式?
共轭复数公式是z=a+bi。根据定义,若z=a+bi(a,b∈R),则=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称,两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是共轭一词的来源。两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做轭。如果用z表示x+yi,那么在z字上面加个一就表示x-yi,或相反。
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作(z上加一横,英文中可读作Conjugate z,z conjugate or z bar),有时也可表示为z*,根据定义,若z=a+ib(a,b∈R),则=a-ib(a,b∈R)。在复平面上,共轭复数所对应的点关于实轴对称。
共轭复数的性质:|x+yi|=√(x2+y2),(x+yi)(x-yi)=x2+y2,另外还有一些四则运算性质
共轭复数的概念?
基本概念:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。
运算方法:
(1)加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
(2)减法法则:两个复数的差为实数之差加上虚数之差(乘以i),即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
(3)乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(4)除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
(5)开放法则:若z^n=r(cosθ+isinθ),则z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)
运算特征:
(1)(z1+z2)′=z1′+z2′
(2) (z1-z2)′=z1′-z2′
(3) (z1·z2)′=z1′·z2′
(4) (z1/z2)′=z1′/z2′ (z2≠0)
总结:和(差、积、商)的共轭等于共轭的和(差、积、商)。