常见的勾股数有哪些?(100以内勾股数表图片)

常见的勾股数有哪些?

常见的勾股数有:

  (3、4、5)

  (6、8、10)
  (7、24、25)
  (8、15、17)
  (9、40、41)
  (10、24、26)
  (11、60、61)
  (12、16、20)
  (12、35、37)
  (13、84、85)
  (15、20、25)
  (15、112、113)
  (17、144、145)
  (18、24、30)
   (19、180、181)
  (20、21、29)
  (20、99、101)
  (48、55、73)
  (60、91、109)

拓展资料:勾股数

勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2)。

勾股定理在西方被称为Pythagoras定理,它以公元前6世纪希腊哲学家和数学家的名字命名。可以有理由认为他是数学中最重要的基本定理之一,因为他的推论和推广有着广泛的引用。虽然这样称呼,他也是古代文明中最古老的定理之一,实际上比Pythagoras早一千多年的古巴比伦人就已经发现了这一定理,在Plimpton 322泥板上的数表提供了这方面的证据,这块泥板的年代大约是在公元前1700年。对勾股定理的证明方法,从古至今已有400余种。

100以内的常见勾股数有哪些?

有很多组,假设勾股数组分别为i、j、k,下面把100以内的数组列出来,供楼主参考:

i=3 j=4 k=5;

i=5 j=12 k=13;

i=6 j=8 k=10;

i=7 j=24 k=25;

i=8 j=15 k=17;

i=9 j=12 k=15;

i=9 j=40 k=41;

i=10 j=24 k=26;

i=11 j=60 k=61;

i=12 j=16 k=20;

i=12 j=35 k=37;

i=13 j=84 k=85;

i=14 j=48 k=50;

i=15 j=20 k=25;

i=15 j=36 k=39;

i=16 j=30 k=34;

i=16 j=63 k=65;

i=18 j=24 k=30;

i=18 j=80 k=82;

i=20 j=21 k=29;

i=20 j=48 k=52;

i=21 j=28 k=35;

i=21 j=72 k=75;

i=24 j=32 k=40;

i=24 j=45 k=51;

i=24 j=70 k=74;

i=25 j=60 k=65;

i=27 j=36 k=45;

i=28 j=45 k=53;

i=30 j=40 k=50;

i=30 j=72 k=78;

i=32 j=60 k=68;

i=33 j=44 k=55;

i=33 j=56 k=65;

i=35 j=84 k=91;

i=36 j=48 k=60;

i=36 j=77 k=85;

i=39 j=52 k=65;

i=39 j=80 k=89;

i=40 j=42 k=58;

i=40 j=75 k=85;

i=42 j=56 k=70;

i=45 j=60 k=75;

i=48 j=55 k=73;

i=48 j=64 k=80;

i=51 j=68 k=85;

i=54 j=72 k=90;

i=57 j=76 k=95;

i=60 j=63 k=87;

i=65 j=72 k=97。

常见的勾股数有哪些

常见的勾股数有:(3,4,5),(6,8,10)……;3n,4n,5n(n是正整数)。勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2)。

常见的勾股数通式有:

1、(5,12,13),(7,24,25),(9,40,41)……

2n+1,2n^2+2n,2n^2+2n+1(n是正整数)

2、(8,15,17),(12,35,37)……

2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)

3、m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)

写出常见的几组勾股数

常见的几组勾股数是:3、4、5,勾股数又名毕氏三元数,勾股数就是可以构成一个直角三角形三边的一组正整数,勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2)。

勾股定理在西方被称为Pythagoras定理,它以公元前6世纪希腊哲学家和数学家的名字命名。可以有理由认为他是数学中最重要的基本定理之一,因为他的推论和推广有着广泛的引用。虽然这样称呼,他也是古代文明中最古老的定理之一,实际上比Pythagoras早一千多年的古巴比伦人就已经发现了这一定理,在Plimpton322泥板上的数表提供了这方面的证据,这块泥板的年代大约是在公元前1700年。对勾股定理的证明方法,从古至今已有400余种。

求几组常见基本勾股数

常见基本勾股数:3,4,5 ;5,12,13 ;8,15,17 ;7,24,25;9,40,41;6,8,10;

勾股数又名毕氏三元数 ,勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a,b的平方和等于斜边c的平方。

常见的勾股数有哪些

  • 3.4.55.12.137.24.258.15.17

常见的勾股数有哪些

  • 3.4.55.12.137.24.258.15.17